How Die Dimensions Challenge Assembly Processes
By Anne Meixner, SemiEngineering (September 19th, 2024)
Chiplet-based products must accommodate small differences in die size and bump pitch, placing new demands on manufacturing tools.
Multi-die assemblies are becoming more common and more complex due to technology advancements and market demands, but differing die dimensions are making this process increasingly challenging.
To fully enable a multi-chiplet ecosystem, standardized component handling and interfaces are needed. The underlying concept is similar to LEGO blocks that simply snap together, yet it’s nowhere near that simple. Building these multi-die assemblies today involves various flavors of interposers, bonding methods, and packaging approaches. Also different die dimensions (e.g., x, y, z) require a wider assembly process envelope. And as the number of chiplets on interposers and/or substrates increases, managing warpage, thermal dissipation, and mechanical stability become proportionately more difficult.
This is made even more challenging when those dies/chiplets are sourced from different foundries. Dies may be manufactured with different heights, areas, and bump pitches. While not insurmountable, those inconsistencies increase the time, effort, and cost needed to make these systems work.
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related Technical Papers
- Small Dies, Big Dreams: Challenges and Opportunities in Chiplet Commoditization
- The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy
- Advanced Optical Integration Processes for Photonic-Integrated Circuit Packaging
- Development and Optimization of Fine-Pitch RDL for RDL Interposer, and Embedded Bridge Die Interposer Fabrication Using Fan-Out Wafer-Level Packaging Technology
Latest Technical Papers
- Advances in waveguide to waveguide couplers for 3D integrated photonic packaging
- Lifecycle Cost-Effectiveness Modeling for Redundancy-Enhanced Multi-Chiplet Architectures
- DISTIL: A Distributed Spiking Neural Network Accelerator on 2.5D Chiplet Systems
- Multi-Partner Project: COIN-3D -- Collaborative Innovation in 3D VLSI Reliability
- EOTPR Fine Pitch Probing for Die-to-Die Interconnect Failure Analysis