Thermal Implications of Non-Uniform Power in BSPDN-Enabled 2.5D/3D Chiplet-based Systems-in-Package using Nanosheet Technology
By Yukai Chen 1, Massimiliano Di Todaro 1,3, Bjorn Vermeersch 1, Herman Oprins 1, Daniele Jahier Pagliari 3, Julien Ryckaert 1, Dwaipayan Biswas 1 and James Myers 2
1 IMEC, Belgium
2 IMEC, United Kingdom
3 DAUIN, Politecnico di Torino, Italy

Abstract
Advances in nanosheet technologies have significantly increased power densities, exacerbating thermal management challenges in 2.5D/3D chiplet-based Systems-in-Package (SiP). While traditional thermal analyses often employ uniform power maps to simplify computational complexity, this practice neglects localized heating effects, leading to inaccuracies in thermal estimations, especially when comparing power delivery networks (PDN) in 3D integration. This work examines the thermal impact of non-uniform power distributions on SiPs utilizing frontside (FSPDN) and backside (BSPDN) power delivery approaches. Using high-resolution thermal simulations with non-uniform power maps at resolutions down to 5 micrometers, we demonstrate that uniform power assumptions substantially underestimate peak temperatures and fail to reveal critical thermal differences between BSPDN and FSPDN configurations in 3D scenarios. Our results highlight that BSPDN configurations in 3D, although beneficial in simplified uniform scenarios, exhibit pronounced thermal penalties under realistic, localized workloads due to limited lateral heat spreading. These findings emphasize the necessity of adopting fine-grained, workload-aware power maps in early-stage thermal modeling to enable accurate PDN assessment and informed thermal-aware design decisions in advanced nanosheet-based 3D SiP.
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related Technical Papers
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Workflows for tackling heterogeneous integration of chiplets for 2.5D/3D semiconductor packaging
- Five Workflows for Tackling Heterogeneous Integration of Chiplets for 2.5D/3D
- The Survey of Chiplet-based Integrated Architecture: An EDA perspective
Latest Technical Papers
- Advances in waveguide to waveguide couplers for 3D integrated photonic packaging
- Lifecycle Cost-Effectiveness Modeling for Redundancy-Enhanced Multi-Chiplet Architectures
- DISTIL: A Distributed Spiking Neural Network Accelerator on 2.5D Chiplet Systems
- Multi-Partner Project: COIN-3D -- Collaborative Innovation in 3D VLSI Reliability
- EOTPR Fine Pitch Probing for Die-to-Die Interconnect Failure Analysis