Complex Heterogeneous Integration Drives Innovation In Semiconductor Test
By Jeorge Hurtarte, Teradyne
Advanced packaging and chiplets demand sophisticated and flexible test strategies.
Heterogeneous integration is driving innovation in the semiconductor industry, but it also introduces more complexity in chip design, which translates to more intricate test requirements. The automated test equipment (ATE) industry is responding, developing and utilizing more sophisticated test equipment capable of handling the diverse functionalities and interfaces needed to test heterogeneous chips. This includes testing for different communication protocols, power domains, and thermal characteristics – ultimately covering each set of integrated components with its own set of parameters and performance standards.
Heterogeneous integration at a glance
Heterogeneous chips, also known as heterogeneous integration, involve combining multiple, separately-manufactured components (e.g., processors, memory, sensors) into a single package or System in Package (SiP). The components combined in this way, known as chiplets, can be made using different processes and materials. A version of heterogeneous integration is shown in Figure 1.
To read the full article, click here
Related Chiplet
- High Performance Droplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
Related Technical Papers
- Workflows for tackling heterogeneous integration of chiplets for 2.5D/3D semiconductor packaging
- Heterogeneous Integration Brings Compound Semiconductors into the Age of RF CMOS
- Heterogeneous Integration - Chiplets
- Why package lithography matters in heterogeneous chiplet integration
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy