Chiplets Are The New Baseline for AI Inference Chips
Monolithic AI chips are just not viable, since they force trade-offs at every level, including thermal limits and reticle constraints.
By Sid Sheth, Founder & CEO of d-Matrix
EETimes | August 5, 2025
AI has moved from proof-of-concept to production at scale, and inference, not training, is where the real operational and economic pressure lies. Whether you’re powering conversational agents, orchestrating industrial automation, or deploying AI at the edge, the cost of inference now dominates the AI lifecycle.
Yet many systems still rely on monolithic chip architectures that are fundamentally misaligned with the realities of inference workloads.
The result? Wasted energy. Inflated costs. Underutilized silicon.
Chiplet-based architectures offer a way out. By partitioning a system into tightly integrated, functional modules—compute, memory, interconnect, and control—chiplets enable better yield, more efficient packaging, and faster system evolution.
To read the full article, click here
Related Chiplet
- High Performance Droplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
Related Technical Papers
- Inter-Layer Scheduling Space Exploration for Multi-model Inference on Heterogeneous Chiplets
- PICNIC: Silicon Photonic Interconnected Chiplets with Computational Network and In-memory Computing for LLM Inference Acceleration
- Toward Open-Source Chiplets for HPC and AI: Occamy and Beyond
- Chiplets for Automotive – Are We There Yet?
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy