System-in-Package (SiP)
System-in-Package (SiP) is a cutting-edge semiconductor packaging technology that integrates multiple chips and passive components into a single compact module. SiP enables high functionality, miniaturization, and optimized performance, making it ideal for smartphones, wearables, IoT devices, automotive electronics, and high-performance computing applications.
What Is System-in-Package (SiP)?
System-in-Package (SiP) is a technology that combines multiple integrated circuits (ICs), passive components, and interconnects into one package. Unlike traditional multi-chip modules, SiP uses advanced 3D stacking or side-by-side layouts to achieve a smaller footprint, better performance, and lower power consumption.
SiP allows engineers to build highly integrated systems without the cost and complexity of creating a single large monolithic chip.
Related Articles
- Advancing Trustworthiness in System-in-Package: A Novel Root-of-Trust Hardware Security Module for Heterogeneous Integration
- High-performance, power-efficient three-dimensional system-in-package designs with universal chiplet interconnect express
- System-Level Validation Across Multiple Platforms to build a Robust 2.5D Multi Foundry Chiplet Solution
- REED: Chiplet-based Accelerator for Fully Homomorphic Encryption
- Chiplet-Based Techniques for Scalable and Memory-Aware Multi-Scalar Multiplication
Related Blogs
- Intel Foundry Collaborates with Partners to Drive an Open Chiplet Marketplace
- What Is 3D-IC Technology? Fundamentals, Architecture, and Design Concepts
- Introduction to Chiplets: Why the Industry is Moving Beyond Monolithic Designs
- The Chiplet Calculus: Navigating the Integration Crisis at the Hardware.AD Frontier
- Streamlining Functional Verification for Multi-Die and Chiplet Designs
Featured Content
- Advancing Europe’s Automotive Chiplet Vision: Arteris Joins CHASSIS to Accelerate Software-Defined Mobility
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- Cadence Launches Partner Ecosystem to Accelerate Chiplet Time to Market
- Ambiq and Bravechip Cut Smart Ring Costs by 85% with New Edge AI Chiplet
- TI accelerates the shift toward autonomous vehicles with expanded automotive portfolio
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- Where co-packaged optics (CPO) technology stands in 2026
- Coding approaches for increasing reliability and energy efficiency of 3D technologies
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- AI-Driven Thermal Prediction for Enhanced Reliability in 3D HBM Chiplets
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy
- 3D-IC Market Outlook: Technology Roadmaps, Readiness, and Design Implications
- Cadence 3D-IC Success Stories: Faster Bandwidth, Lower Power, On-Time Tapeouts
- Recent Progress in Structural Integrity Evaluation of Microelectronic Packaging Using Scanning Acoustic Microscopy (SAM): A Review