Efficient ESD Verification For 2.5/3D Automotive ICs
Evaluate ESD protection for interconnect robustness to ensure adequate handling of an event.
By Dina Medhat, Siemens EDA
SemiEngineering (December 9th, 2024)
Protection against electrostatic discharge (ESD) events is an extremely important aspect of integrated circuit (IC) design and verification, particularly for 2.5/3D designs targeted for automotive systems. ESD events cause severe damage to ICs due to a sudden and unexpected flow of electrical current between two electrically charged objects. This current may be caused by contact, an electrical short, or dielectric breakdown.
No matter the cause, all ESD events can cause a metal melt, junction breakdown, or oxide failure. ESD can damage an electronic component at any stage of its production or real world use if not properly prevented. ESD events can cause ICs to fail prematurely, or to operate at less than designed functionality, neither of which is good for market reputation.
What about 2.5D/3D ICs?
2.5D/3D ICs have evolved to enable innovative solutions for many design and integration challenges. As shown in figure 1, 2.5D ICs often have multiple dies placed side-by-side on a passive silicon interposer. The interposer is placed on a ball grid array (BGA) organic substrate. Micro-bumps attach each die to the interposer, and flip-chip (C4) bumps attach the interposer to the BGA substrate. In 3D ICs, dies are mounted on top of each other. Connections made between stacked dies and the substrate implemented using through-silicon vias (TSVs).
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related Technical Papers
- Towards efficient ESD protection strategies for advanced 3D systems-on-chip
- Dual-Stripline Configuration for Efficient Routing in Chiplet Interconnects
- ChipAI: A scalable chiplet-based accelerator for efficient DNN inference using silicon photonics
- Optimized Low Parasitic Capacitance ESD Clamps for High-Bandwidth 2.5D/3D Chiplet Interfaces in Advanced FinFET Technology
Latest Technical Papers
- Advances in waveguide to waveguide couplers for 3D integrated photonic packaging
- Lifecycle Cost-Effectiveness Modeling for Redundancy-Enhanced Multi-Chiplet Architectures
- DISTIL: A Distributed Spiking Neural Network Accelerator on 2.5D Chiplet Systems
- Multi-Partner Project: COIN-3D -- Collaborative Innovation in 3D VLSI Reliability
- EOTPR Fine Pitch Probing for Die-to-Die Interconnect Failure Analysis