Corsair: An In-memory Computing Chiplet Architecture for Inference-time Compute Acceleration
By Satyam Srivastava; Akhil Arunkumar; Nithesh Kurella; Amrit Panda; Gaurav Jain; Purushotham Kamath
d-Matrix Corporation
Abstract:
Advances in Generative AI (GenAI) have reinvigorated research into novel computing architectures such as Transformer. Transformer, characterized by low arithmetic intensity during most of the inference time, has become the cornerstone of GenAI underlying Large Language (LLM) and Reasoning Models (RM). Numerous solutions to the intense memory bandwidth problem have been proposed. Corsair is an architecture that targets this need using chiplet design, digital in-memory computing-based matrix engine, efficient die-to-die interconnects, block floating point numerics, and large high-bandwidth on-chip memories. We describe the Corsair chiplet, scaling approaches to compose larger systems, and outline the software stack. We formulate the inference-time requirements of LLM and RM computation, memory bandwidth, memory capacity, and interconnect efficiency for scaling. We also show how Corsair design perfectly fits these workloads. We present benchmark results from Corsair silicon that correlate strongly with the design and preview an estimate of workload-level improvements expected with Corsair.
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related Technical Papers
- PICNIC: Silicon Photonic Interconnected Chiplets with Computational Network and In-memory Computing for LLM Inference Acceleration
- AIG-CIM: A Scalable Chiplet Module with Tri-Gear Heterogeneous Compute-in-Memory for Diffusion Acceleration
- Hemlet: A Heterogeneous Compute-in-Memory Chiplet Architecture for Vision Transformers with Group-Level Parallelism
- Co-Optimization of Power Delivery Network Design for 3-D Heterogeneous Integration of RRAM-Based Compute In-Memory Accelerators
Latest Technical Papers
- Advances in waveguide to waveguide couplers for 3D integrated photonic packaging
- Lifecycle Cost-Effectiveness Modeling for Redundancy-Enhanced Multi-Chiplet Architectures
- DISTIL: A Distributed Spiking Neural Network Accelerator on 2.5D Chiplet Systems
- Multi-Partner Project: COIN-3D -- Collaborative Innovation in 3D VLSI Reliability
- EOTPR Fine Pitch Probing for Die-to-Die Interconnect Failure Analysis