ChipletPart: Scalable Cost-Aware Partitioning for 2.5D Systems
By Alexander Graening, Student Member, IEEE, Puneet Gupta, Fellow, IEEE, Andrew B. Kahng, Fellow, IEEE, Bodhisatta Pramanik, Student Member, IEEE and Zhiang Wang, Member, IEEE

Abstract
Industry adoption of chiplets has been increasing as a cost-effective option for making larger high-performance systems. Consequently, partitioning large systems into chiplets is increasingly important. In this work, we introduce ChipletPart - a cost-driven 2.5D system partitioner that addresses the unique constraints of chiplet systems, including complex objective functions, limited reach of inter-chiplet I/O transceivers, and the assignment of heterogeneous manufacturing technologies to different chiplets. ChipletPart integrates a sophisticated chiplet cost model with its underlying genetic algorithm-based technology assignment and partitioning methodology, along with a simulated annealing-based chiplet floorplanner. Our results show that: (i) ChipletPart reduces chiplet cost by up to 58% (20% geometric mean) compared to state-of-the-art min-cut partitioners, which often yield floorplan-infeasible solutions; (ii) ChipletPart generates partitions with up to 47% (6% geometric mean) lower cost as compared to the prior work Floorplet; and (iii) for the testcases we study, heterogeneous integration reduces cost by up to 43% (15% geometric mean) compared to homogeneous implementations. We also present case studies that show how changes in packaging or inter-chiplet signaling technologies can affect partitioning solutions. Finally, we make ChipletPart, the underlying chiplet cost model, and a chiplet testcase generator available as open-source tools for the community.
To read the full article, click here
Related Chiplet
- High Performance Droplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
Related Technical Papers
- AuthenTree: A Scalable MPC-Based Distributed Trust Architecture for Chiplet-based Heterogeneous Systems
- 3D Electronic-Photonic Heterogenous Interconnect Platforms Enabling Energy-Efficient Scalable Architectures For Future HPC Systems
- ControlPULPlet: A Flexible Real-time Multi-core RISC-V Controller for 2.5D Systems-in-package
- 3D-ICE 4.0: Accurate and efficient thermal modeling for 2.5D/3D heterogeneous chiplet systems
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy