Challenges and Opportunities to Enable Large-Scale Computing via Heterogeneous Chiplets
Fast-evolving artificial intelligence (AI) algorithms such as large language models have been driving the ever-increasing computing demands in today's data centers. Heterogeneous computing with domain-specific architectures (DSAs) brings many opportunities when scaling up and scaling out the computing system. In particular, heterogeneous chiplet architecture is favored to keep scaling up and scaling out the system as well as to reduce the design complexity and the cost stemming from the traditional monolithic chip design. However, how to interconnect computing resources and orchestrate heterogeneous chiplets is the key to success. In this paper, we first discuss the diversity and evolving demands of different AI workloads. We discuss how chiplet brings better cost efficiency and shorter time to market. Then we discuss the challenges in establishing chiplet interface standards, packaging, and security issues. We further discuss the software programming challenges in chiplet systems.
To read the full article, click here
Related Chiplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related Technical Papers
- NoCs and the transition to multi-die systems using chiplets
- Small Dies, Big Dreams: Challenges and Opportunities in Chiplet Commoditization
- Leveraging 3D Technologies for Hardware Security: Opportunities and Challenges
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
Latest Technical Papers
- Chiplet-Based RISC-V SoC with Modular AI Acceleration
- Near-energy-free photonic Fourier transformation for convolution operation acceleration
- Optimizing Inter-chip Coupler Link Placement for Modular and Chiplet Quantum Systems
- Material Needs and Measurement Challenges for Advanced Semiconductor Packaging: Understanding the Soft Side of Science
- Leveraging 3D Technologies for Hardware Security: Opportunities and Challenges