Die-Level Transformation of 2D Shuttle Chips into 3D-IC for Advanced Rapid Prototyping using Meta Bonding
Three-dimensional integrated circuit (3D-IC) technology, often referred to as through-silicon via (TSV) formation technology, has been steadily maturing and is increasingly used in advanced semiconductor devices such as 3D complementary metal-oxide-semiconductor image sensors, high-bandwidth memory, and static random-access memory on central processing units (commonly known as 3D V-Cache). However, the initial development costs remain prohibitively high, primarily due to the substantial investment required for TSV formation at the wafer level. Meanwhile, conventional system-on-chip designs are transitioning from fin field-effect transistor to gate-all-around architectures using the latest sub-3 nm technology nodes and incorporating extreme ultraviolet lithography along with other cutting-edge techniques. Simultaneously, the academic community is fostering an environment that supports technology node utilization from legacy 180 to 7 nm, enabling designers to develop two-dimensional IC (2D-IC) chips with novel architectures at reduced costs. Despite these advancements, foundry shuttle services utilizing TSVs remain largely inaccessible, making proof-of-principle demonstrations and functional verification using 3D-ICs extremely challenging. This study introduces recent technological advancements that enable the transformation of 2D-ICs into 3D-ICs using shuttle chips from multi-project wafers, ranging from small to large-scale implementations. The discussion primarily focuses on die-level, short-turnaround-time 3D-IC fabrication, emphasizing key enabling technologies such as multichip thinning and TSV/microbump formation. In addition, the study explores the effectiveness of Meta Bonding techniques, including fine-pitch microbump, direct bonding, and hybrid bonding, for future high-performance 3D-IC prototyping.
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related Technical Papers
- Thermal stability enhancement of low temperature Cu-Cu bonding using metal passivation technology for advanced electronic packaging
- 3D integration of pixel readout chips using Through-Silicon-Vias
- Heterogeneous Integration Brings Compound Semiconductors into the Age of RF CMOS
- Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
Latest Technical Papers
- Advances in waveguide to waveguide couplers for 3D integrated photonic packaging
- Lifecycle Cost-Effectiveness Modeling for Redundancy-Enhanced Multi-Chiplet Architectures
- DISTIL: A Distributed Spiking Neural Network Accelerator on 2.5D Chiplet Systems
- Multi-Partner Project: COIN-3D -- Collaborative Innovation in 3D VLSI Reliability
- EOTPR Fine Pitch Probing for Die-to-Die Interconnect Failure Analysis