3D Guard-Layer: An Integrated Agentic AI Safety System for Edge Artificial Intelligence
By Eren Kurshan (Princeton University), Yuan Xie (Hong Kong University), Paul Franzon (North Carolina State University)

Abstract
AI systems have found a wide range of real-world applications in recent years. The adoption of edge artificial intelligence, embedding AI directly into edge devices, is rapidly growing. Despite the implementation of guardrails and safety mechanisms, security vulnerabilities and challenges have become increasingly prevalent in this domain, posing a significant barrier to the practical deployment and safety of AI systems. This paper proposes an agentic AI safety architecture that leverages 3D to integrate a dedicated safety layer. It introduces an adaptive AI safety infrastructure capable of dynamically learning and mitigating attacks against the AI system. The system leverages the inherent advantages of co-location with the edge computing hardware to continuously monitor, detect and proactively mitigate threats to the AI system. The integration of local processing and learning capabilities enhances resilience against emerging network-based attacks while simultaneously improving system reliability, modularity, and performance, all with minimal cost and 3D integration overhead.
To read the full article, click here
Related Chiplet
- High Performance Droplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
Related Technical Papers
- System-Technology Co-Optimization for Dense Edge Architectures using 3D Integration and Non-Volatile Memory
- 3D-ICE 4.0: Accurate and efficient thermal modeling for 2.5D/3D heterogeneous chiplet systems
- Heterogeneous Integration Technologies for Artificial Intelligence Applications
- LaZagna: An Open-Source Framework for Flexible 3D FPGA Architectural Exploration
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy