The Economics of Chiplets
By Kari-No-Sugata, mooreslawisdead.com
Introduction
In the past, it was common for PCs to have a separate chip called a northbridge on the motherboard. The northbridge had a direct connection to the processor and handled the main memory controller and primary I/O functions. To help improve performance, processor designers integrated the main memory controller and the primary I/O controller onto the processor and the northbridge disappeared from the motherboard. Like how the x87 floating-point coprocessor was eventually integrated in the processor, this is part of a long running trend to integrate more and more onto the main processor.
The I/O chiplet on current Zen processors is effectively a northbridge, except that it is integrated into the processor package rather than the motherboard. So why did AMD seemingly go backwards?
To read the full article, click here
Related Chiplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related Technical Papers
- The Next Frontier in Semiconductor Innovation: Chiplets and the Rise of 3D-ICs
- Codesign of quantum error-correcting codes and modular chiplets in the presence of defects
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
- A cost analysis of the chiplet as a SoC solution
Latest Technical Papers
- AuthenTree: A Scalable MPC-Based Distributed Trust Architecture for Chiplet-based Heterogeneous Systems
- THERMOS: Thermally-Aware Multi-Objective Scheduling of AI Workloads on Heterogeneous Multi-Chiplet PIM Architectures
- LaZagna: An Open-Source Framework for Flexible 3D FPGA Architectural Exploration
- Corsair: An In-memory Computing Chiplet Architecture for Inference-time Compute Acceleration
- Thermal Implications of Non-Uniform Power in BSPDN-Enabled 2.5D/3D Chiplet-based Systems-in-Package using Nanosheet Technology