Quantum Dot DBR Lasers Monolithically Integrated on Silicon Photonics by In-Pocket Heteroepitaxy
By Rosalyn Koscica 1, Alec Skipper 1, Bei Shi 1, Kaiyin Feng 1, Gerald Leake 2 and Michael Zylstra 3
1 University of California, USA
2 RF SUNY Polytechnic Institute, USA
3 Analog Photonics, USA
Abstract:
Monolithically integrated lasers on silicon photonics enable scalable, foundry-compatible production for data communications applications. However, material mismatches in heteroepitaxial systems and high coupling losses pose challenges for III-V integration on silicon. We combine three techniques: recessed silicon pockets for III-V growth, two-step heteroepitaxy using both MOCVD and MBE, and a polymer facet gap-fill approach to develop O-band InAs quantum dot lasers monolithically integrated on silicon photonics chiplets. Lasers coupled to silicon ring resonators and silicon nitride distributed Bragg reflectors (DBR) demonstrate single-mode lasing with side-mode suppression ratio up to 32 dB. Devices lase at temperatures up to 105 °C with an extrapolated operational lifetime of 6.2 years at 35 °C.
Index Terms—Active-passive coupling, DBR laser, III-V on Si integration, monolithic integration, optical coupling, O-band, quantum dot laser, semiconductor laser, silicon photonics.
To read the full article, click here
Related Chiplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related Technical Papers
- The Evolution of Photonic Integrated Circuits and Silicon Photonics
- ChipAI: A scalable chiplet-based accelerator for efficient DNN inference using silicon photonics
- Inter-Layer Scheduling Space Exploration for Multi-model Inference on Heterogeneous Chiplets
- MECH: Multi-Entry Communication Highway for Superconducting Quantum Chiplets
Latest Technical Papers
- MAHL: Multi-Agent LLM-Guided Hierarchical Chiplet Design with Adaptive Debugging
- ATSim: A Fast and Accurate Simulation Framework for 2.5D/3D Chiplet Thermal Design Optimization
- Chiplet-Based Architectures: Redefining the Future of System-on-Chip (SoC) Design
- AuthenTree: A Scalable MPC-Based Distributed Trust Architecture for Chiplet-based Heterogeneous Systems
- THERMOS: Thermally-Aware Multi-Objective Scheduling of AI Workloads on Heterogeneous Multi-Chiplet PIM Architectures