HexaMesh: Chiplet Topologies Inspired by Nature
By Timothy Prickett Morgan, The Next Platform
With the reticle limit for chip manufacturing pretty much set in stone (pun intended) at 26 millimeters by 33 millimeters down to 2 nanometer transistor sizes with extreme ultraviolet lithography techniques and being cut in half to 26 millimeters by 16.5 millimeters for the High-NA extreme ultraviolet lithography needed to push below 2 nanometer transistor sizes, chiplets are inevitable and monolithic dies are absolutely going to become a thing of the past.
And so the question arises: When it comes to large complexes of chiplets, what is the best shape for a chiplet, and what is the optimal arrangement of these chiplets and the interconnects that link them together into a virtual monolith? (Again, pun intended.) Researchers at ETH Zurich and the University of Bologna played a little game of chiplet Tetris to try to find out, and came up with a neat configuration they call HexaMesh.
To read the full article, click here
Related Chiplet
- High Performance Droplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
Related Technical Papers
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- AIG-CIM: A Scalable Chiplet Module with Tri-Gear Heterogeneous Compute-in-Memory for Diffusion Acceleration
- Modular Compilation for Quantum Chiplet Architectures
- PlaceIT: Placement-based Inter-Chiplet Interconnect Topologies
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy