Dual-Stripline Configuration for Efficient Routing in Chiplet Interconnects
By Shekar Geedimatla,Jayaprakash Balachandran,Midhun Vysakham,Srinivas Venkataraman,Shalabh Gupta
Routing density is becoming in big challenge in die-to-die interconnects. In this paper, we propose use of the dual-stripline configuration for routing signals in high-density interconnects. The scheme can improve the routing density by up to 33% when compared with the conventionally used stripline configuration. To address the challenges of crosstalk due to the proximity between vertically adjacent signal lines, halfpitch offset between lines on vertically adjacent layers has been proposed. The proposed routing scheme has been validated using 3D full-wave electromagnetic simulations. The simulations show that the scheme can be used for increasing the routing density in the Bunch-of-wires interface by 25%, while meeting all the Bunch-of-wires channel specifications, which include eye-opening value above 60% unit interval at a bit error rate of 10−15, with data rates of 16 Gbps per wire.
To read the full article, click here
Related Chiplet
- High Performance Droplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
Related Technical Papers
- High-Bandwidth Chiplet Interconnects for Advanced Packaging Technologies in AI/ML Applications: Challenges and Solutions
- Defect Analysis and Built-In-Self-Test for Chiplet Interconnects in Fan-out Wafer-Level Packaging
- Leveraging Chiplet-Locality for Efficient Memory Mapping in Multi-Chip Module GPUs
- The chiplet universe is coming: What’s in it for you?
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy