Chiplets: Piecing Together the Next Generation of Chips (Part II)
By Erik Jan Marinissen, Eric Beyne (imec)
Testing the limits: standardization and optimization of chiplet test protocols
Chiplets are here to stay
Chiplets are modular chips with a specific function that are separately fabricated and then interconnected to form a larger system. They have emerged as a promising approach to address challenges in scaling of integrated circuits and offer versatility, scalability, and performance advantages over traditional, monolithic System-on-Chip (SoC) designs. Chiplet technology is relatively new. Just a handful of large semiconductor companies, such as AMD and Intel, have products on the market, while foundry TSMC is currently looking into standardizing the process of developing and combining chiplets on a substrate. Nevertheless, the global chiplet market is expected to grow at an annual rate of over 42% says a new report.
Electrical testing of chiplets ensures the reliability, functionality, and interoperability of these heterogeneous architectures. This article focusses on recent advancements in chiplet testing protocols and initialization of testing standards that extend beyond competitive boundaries.
Reliability and quality criteria
The quality of a chiplet refers to its condition at the moment of manufacturing. Chiplets -just like monolithic SoCs- follow certain quality criteria per application field in the manufacturing process, covering aspects such as performance and functionality. Despite rigorous testing, some defects remain undetected and ‘escape’ to the final chiplet – the so-called ‘test escapes,’ A typical number of tolerated defects for consumer electronics such as mobile phones is 100dppm (defective parts per million). This means that for every million chiplets, 100 faulty ones are tolerated. Conversely, automotive is the most stringent application field, with customers asking for “0dppm” (which in reality translates to single-digit dppm). That is because electronics in a car are often critical for safety: if your airbag opens without a good reason due to a test escape, chances are high that the driver will cause an accident. And, even for seemingly trivial issues with the car radio, the end customer will not accept a new car if the radio does not play. Other demanding application fields are avionics and medical.
Chiplets are tested after production to identify potential failure mechanisms during their operational lifetime, including heating, cooling down, or thermo-shock vibration testing to ensure reliability.
To read the full article, click here
Related Chiplet
- DPIQ Tx PICs
- IMDD Tx PICs
- Near-Packaged Optics (NPO) Chiplet Solution
- High Performance Droplet
- Interconnect Chiplet
Related News
- Chiplets: Piecing Together the Next Generation of Chips (Part I)
- Xallent and MPI Announce Strategic Partnership to Innovate and Accelerate the Development of Next Generation AI Chips
- Alphawave Semi Highlights Why the Next Generation of AI Advances Demand Chiplet Architectures at EE Times: The Future of Chiplets
- Alphawave Semi Taped-Out Industry Leading 64Gbps UCIe™ IP on TSMC 3nm for the IP Ecosystem, Unleashing Next Generation of AI Chiplet Connectivity
Latest News
- CoAsia SEMI Commences Supply of 3D IC SoCs: Korea’s First Case, Positioning 3D IC as the Next HBM
- Eliyan Secures $50 Million in Strategic Investments from Leading Hyperscalers and AI Infrastructure Providers to Accelerate Scalable AI Systems
- Veeco and imec develop 300mm compatible process to enable integration of barium titanate on silicon photonics
- Lightmatter Introduces Guide Light Engine for AI, Featuring VLSP Technology
- Lightmatter and GUC Partner to Produce Co-Packaged Optics (CPO) Solutions for AI Hyperscalers