The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy
Gleaning useful information well before all the details of an assembly are known.
By John Ferguson, Siemens Digital Industries Software (April 25, 2024)
As the industry marches forward in a 3D-IC centric design approach, we are facing a new problem. Sometimes referred to as “electro-thermal” or “electro-thermo-mechanical,” it really is the confluence of multiple forms of physics exerting impacts on both the physical manufacture and structure of these multi-die designs and their electrical behavior.
What are 3D-IC multiphysics effects
Put simply, we know that changes in temperatures impact electrical behavior of both wires and transistor-level devices. Similarly, mechanical stresses can also impact the circuitry behavior. When we think about the consequences of these combining issues, the implications are quite huge with respect to the long-held desire of a design environment where chiplets in the form of hard IP can be dropped in to a 3D heterogeneous design assembly and work out of the box. In fact, even the concept of known-good-die has to be rethought.
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related Technical Papers
- The multiphysics challenges of 3D IC designs
- How Die Dimensions Challenge Assembly Processes
- Chiplet Strategy is Key to Addressing Compute Density Challenges
- Reliability challenges in 3D IC semiconductor design
Latest Technical Papers
- Analysis Of Multi-Chiplet Package Designs And Requirements For Production Test Simplification
- Spiking Transformer Hardware Accelerators in 3D Integration
- GATE-SiP: Enabling Authenticated Encryption Testing in Systems-in-Package
- AIG-CIM: A Scalable Chiplet Module with Tri-Gear Heterogeneous Compute-in-Memory for Diffusion Acceleration
- Chiplever: Towards Effortless Extension of Chiplet-based System for FHE