Synopsys-Ansys 2.5D/3D Multi-Die Design Update: Learning from the Early Adopters

The demand for high-performance computing (HPC), data centers, and AI-driven applications has fueled the rise of 2.5D and 3D multi-die designs, offering superior performance, power efficiency, and packaging density. However, these benefits come with myriads of challenges, such as multi-physics, which need to be addressed. Ansys and Synopsys as part of their long-standing partnership are addressing these multi-die design challenges, bringing together cutting-edge technology and solutions to enhance the multi-die design and verification process from early architecture to manufacturing and reliability

Multi-Die Design Challenges: Architecture and Early Prototyping

Multi-die designs are far more complex than traditional monolithic chip designs. The integration of multiple heterogeneous and homogeneous dies within a single package leads to significant challenges, particularly in thermal management, mechanical stress, and early architecture decisions. The initial architecture and die placement are major steps in the multi-die design process, requiring specialized tools. Synopsys 3DIC Compiler™ is an industry-leading solution that helps define the architecture of 2.5D/3D multi-die designs in a unified exploration-to-signoff platform. It enables chip designers to address early architectural challenges effectively, facilitating smoother transitions into early prototyping and ultimately to signoff.

To read the full article, click here