The Evolution of Photonic Integrated Circuits and Silicon Photonics
By Xiaoxi He, IDTechEx
EETimes Europe (September 26, 2024)
The rise of AI and the growing demands of data centers have significantly attracted attention toward PICs and silicon photonics.
Photonic integrated circuits (PICs) are optical microchip systems with optical components utilizing light (or photons) for data transmission instead of electrons, which are the basis of traditional integrated circuits (ICs), also known as electronic integrated circuits (EICs).
This fundamental shift from electronic to photonic signals enables data to be transferred at the speed of light, resulting in significantly higher speeds and greater bandwidth compared with EICs, which are limited by the slower movement of electrons. Massless photons can transmit without the same resistive losses as EICs, leading to less power consumption and heat generation. PICs are also immune to electromagnetic interference due to the utilization of light. These features enable scaling and improvement of data transmission with high reliability.
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related Technical Papers
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
- The Next Frontier in Semiconductor Innovation: Chiplets and the Rise of 3D-ICs
- Codesign of quantum error-correcting codes and modular chiplets in the presence of defects
- The Revolution of Chiplet Technology in Automotive Electronics and Its Impact on the Supply Chain
Latest Technical Papers
- 3D integration of pixel readout chips using Through-Silicon-Vias
- Introducing 2D-material based devices in the logic scaling roadmap
- Modular Compilation for Quantum Chiplet Architectures
- Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection
- Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs