Codesign of quantum error-correcting codes and modular chiplets in the presence of defects
By Sophia Fuhui Lin (University of Chicago), Joshua Viszlai (University of Chicago), Kaitlin N. Smith (Super.tech, a software division of Infleqtion), Gokul Subramanian Ravi (University of Chicago), Charles Yuan (MIT CSAIL), Frederic T. Chong (University of Chicago), Benjamin J. Brown (IBM Quantum, T. J. Watson Research Center)
Fabrication errors pose a significant challenge in scaling up solid-state quantum devices to the sizes required for fault-tolerant (FT) quantum applications. To mitigate the resource overhead caused by fabrication errors, we combine two approaches: (1) leveraging the flexibility of a modular architecture, (2) adapting the procedure of quantum error correction (QEC) to account for fabrication defects. We simulate the surface code adapted to qubit arrays with arbitrarily distributed defects to find metrics that characterize how defects affect fidelity. We then determine the impact of defects on the resource overhead of realizing a fault-tolerant quantum computer, on a chiplet-based modular architecture. Our strategy for dealing with fabrication defects demonstrates an exponential suppression of logical failure where error rates of non-faulty physical qubits are ~0.1% in a circuit-based noise model. This is a typical regime where we imagine running the defect-free surface code. We use our numerical results to establish post-selection criteria for building a device from defective chiplets. Using our criteria, we then evaluate the resource overhead in terms of the average number of fabricated physical qubits per logical qubit. We find that an optimal choice of chiplet size, based on the defect rate and target fidelity, is essential to limiting any additional error correction overhead due to defects. When the optimal chiplet size is chosen, at a defect rate of 1% the resource overhead can be reduced to below 3X and 6X respectively for the two defect models we use, for a wide range of target performance. We also determine cutoff fidelity values that help identify whether a qubit should be disabled or kept as part of the error correction code.
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related Technical Papers
- The Next Frontier in Semiconductor Innovation: Chiplets and the Rise of 3D-ICs
- The Revolution of Chiplet Technology in Automotive Electronics and Its Impact on the Supply Chain
- The Evolution of Photonic Integrated Circuits and Silicon Photonics
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
Latest Technical Papers
- Spiking Transformer Hardware Accelerators in 3D Integration
- GATE-SiP: Enabling Authenticated Encryption Testing in Systems-in-Package
- AIG-CIM: A Scalable Chiplet Module with Tri-Gear Heterogeneous Compute-in-Memory for Diffusion Acceleration
- Chiplever: Towards Effortless Extension of Chiplet-based System for FHE
- The Survey of Chiplet-based Integrated Architecture: An EDA perspective