How Die Dimensions Challenge Assembly Processes
By Anne Meixner, SemiEngineering (September 19th, 2024)
Chiplet-based products must accommodate small differences in die size and bump pitch, placing new demands on manufacturing tools.
Multi-die assemblies are becoming more common and more complex due to technology advancements and market demands, but differing die dimensions are making this process increasingly challenging.
To fully enable a multi-chiplet ecosystem, standardized component handling and interfaces are needed. The underlying concept is similar to LEGO blocks that simply snap together, yet it’s nowhere near that simple. Building these multi-die assemblies today involves various flavors of interposers, bonding methods, and packaging approaches. Also different die dimensions (e.g., x, y, z) require a wider assembly process envelope. And as the number of chiplets on interposers and/or substrates increases, managing warpage, thermal dissipation, and mechanical stability become proportionately more difficult.
This is made even more challenging when those dies/chiplets are sourced from different foundries. Dies may be manufactured with different heights, areas, and bump pitches. While not insurmountable, those inconsistencies increase the time, effort, and cost needed to make these systems work.
To read the full article, click here
Related Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Interconnect Chiplet
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related Technical Papers
- Small Dies, Big Dreams: Challenges and Opportunities in Chiplet Commoditization
- The 3D-IC Multiphysics Challenge Dictates A Shift-Left Strategy
- Chiplet Strategy is Key to Addressing Compute Density Challenges
- Reliability challenges in 3D IC semiconductor design
Latest Technical Papers
- Die-Level Transformation of 2D Shuttle Chips into 3D-IC for Advanced Rapid Prototyping using Meta Bonding
- STAMP-2.5D: Structural and Thermal Aware Methodology for Placement in 2.5D Integration
- MCMComm: Hardware-Software Co-Optimization for End-to-End Communication in Multi-Chip-Modules
- FoldedHexaTorus: An Inter-Chiplet Interconnect Topology for Chiplet-based Systems using Organic and Glass Substrates
- ChipletQuake: On-die Digital Impedance Sensing for Chiplet and Interposer Verification