Analysis Of Multi-Chiplet Package Designs And Requirements For Production Test Simplification
UCIe helps test through a fixed shoreline, multiple redundant lanes, and mission mode lane performance monitoring.
By Vineet Pancholi, Amkor
SemiEngineering (November 21st, 2024)
In recent years there has been a sharp rise of multi-die system designs. Numerous publications targeting a large variety of applications exist in the public domain. One presentation [2] on the IEEE’s website does a good job of detailing the anecdotal path of multi-die systems by way of chiplet building blocks integrated within a single package [2]. The presentation includes references to a handful of example multi-die systems that include artificial intelligence (AI), central processing unit (CPU), field-programmable gate array (FPGA), memory, analog, radio frequency (RF), input/output (I/O), serializer/deserializer (SERDES), silicon (Si) photonics, etc. It describes advantages and disadvantages of working with chiplets. In addition, it provides package design considerations, including functional and performance aspects. While it serves as good reference material for background, it provides little to no detail for testability. Chapter 8 of the Heterogeneous Integration Roadmap 2019 Edition offers additional packaging details on single chip and multi-chip integration [3].
Outsourced assembly and test (OSAT) houses are in a unique position in the industry since they experience a wide sampling of customer products. Higher volumes and higher mix of products result in a unique perspective of key learning points and missed steps for product packages with multiple die.
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related Technical Papers
- Business Analysis of Chiplet-Based Systems and Technology
- MFIT : Multi-FIdelity Thermal Modeling for 2.5D and 3D Multi-Chiplet Architectures
- Communication Characterization of AI Workloads for Large-scale Multi-chiplet Accelerators
- Stop-For-Top IP model to replace One-Stop-Shop by 2025... and support the creation of successful Chiplet business
Latest Technical Papers
- ChipAI: A scalable chiplet-based accelerator for efficient DNN inference using silicon photonics
- Advanced Packaging and Chiplets Can Be for Everyone
- Interfacing silicon photonics for high-density co-packaged optics
- System-Technology Co-Optimization for Dense Edge Architectures using 3D Integration and Non-Volatile Memory
- High-Bandwidth Chiplet Interconnects for Advanced Packaging Technologies in AI/ML Applications: Challenges and Solutions