New Tradeoffs In Leading-Edge Chip Design
By Katherine Derbyshire, Semiconductor Engineering (November 21st, 2024)
Device design begins with the anticipated workload. What is it actually supposed to do? What resources — computational units, memory, sensors — are available?
Answering these questions and developing the functional architecture are the first steps in a new design — well before committing it to silicon, said Tim Kogel, senior director of technical product management at Synopsys. Yet even these early decisions begin to constrain the physical architecture.
With a model of the proposed functionality, planners can begin to ask ‘what if’ questions. Does increasing on-chip memory improve performance enough to justify the increased cost and silicon area? What type of GPU is the best match for the anticipated workload?
To read the full article, click here
Related Chiplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related News
- Signal Integrity Plays Increasingly Critical Role In Chiplet Design
- Intel Unveils Chiplet Alliance To Enable New Chip Designs
- Cadence Accelerates SoC, 3D-IC and Chiplet Design for AI Data Centers, Automotive and Connectivity in Collaboration with Samsung Foundry
- Arteris Addresses Silicon Design Reuse Challenge with New Magillem Packaging Product for IP Blocks and Chiplets
Latest News
- Celestial AI Introduces Photonic Fabric™ Module - World’s First SoC with In-Die Optical Interconnect, Ushering in a New Era of Interconnects
- Amkor Announces New Site for U.S. Semiconductor Advanced Packaging and Test Facility
- Arteris Joins UALink Consortium to Accelerate High-Performance AI Networks Scale Up
- Athos Silicon Chief mSoC™ Architect Francois Piednoel to Present the IEEE World Technology Summit 2025 in Berlin
- Marvell Unveils Industry’s First 64 Gbps/wire Bi-Directional Die-to-Die Interface IP in 2nm to Power Next Generation XPUs