Enabling Innovative Multi-Vendor Chiplet-Based Designs
By Elad Alon, Blue Cheetah Analog Design
Semiengineering.com (September 26th, 2024)
What makes chiplets so attractive, and why they are essential for future designs.
Chiplets have emerged as a critical implementation paradigm for semiconductor products, primarily because they can deliver cost benefits relative to a non-chiplet-based approach.
The first, most well-proven, and obvious benefit of a chiplet-based approach is manufacturing cost. Manufacturing cost benefits are accrued either from the appropriate selection of chiplet die size, or by optimizing the technology node of the individual chiplets to best line up with the specific functionality/features they realize.
Note that die size selection doesn’t necessarily mean each chiplet is “small.” In some cases the chiplets are full reticles, but they are being stitched together on package and resulting in a more cost-effective solution than alternative approaches with the same net silicon area. In the case of node optimization, more peripheral or I/O functionality (e.g.) may be best implemented in more mature nodes where the performance is more than sufficient, but the cost is substantially lower than the latest cutting-edge node.
To read the full article, click here
Related Chiplet
- Interconnect Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related Technical Papers
- Signal Integrity Challenges in Chiplet-Based Designs: Addressing Performance and Security
- DCRA: A Distributed Chiplet-based Reconfigurable Architecture for Irregular Applications
- On hardware security and trust for chiplet-based 2.5D and 3D ICs: Challenges and Innovations
- High-performance, power-efficient three-dimensional system-in-package designs with universal chiplet interconnect express
Latest Technical Papers
- Thermo-mechanical co-design of 2.5D flip-chip packages with silicon and glass interposers via finite element analysis and machine learning
- High-Efficient and Fast-Response Thermal Management by Heterogeneous Integration of Diamond on Interposer-Based 2.5D Chiplets
- HexaMesh: Scaling to Hundreds of Chiplets with an Optimized Chiplet Arrangement
- A physics-constrained and data-driven approach for thermal field inversion in chiplet-based packaging
- Probing the Nanoscale Onset of Plasticity in Electroplated Copper for Hybrid Bonding Structures via Multimodal Atomic Force Microscopy