Optical Transmission Modulation Methods Advance
By Robert Huntley, EETimes Europe (November 21, 2024)
With our society’s instantiable appetite for consuming vast amounts of data, it is no surprise that the back-end data networks must constantly evolve. Most high-throughput data networks rely on optical transmission methods to transfer data, with two dominant modulation techniques: 4-level pulse amplitude modulation (PAM4) and coherent modulation. PAM4, where each amplitude level represents two bits, is a bandwidth-efficient modulation technique that suits short-range (< 10km) applications. Coherent modulation, which involves the modulation of a coherent light source’s amplitude, phase and polarization, is more suited to high-speed, long-distance (>10km) transmission. Both modulation techniques are in demand as the race is on to achieve transfer rates of up to 800 Gbps. There are signs that as each technique evolves, the differences in cost, simplicity and power consumption between them will reduce.
EE Times Europe spoke with Tony Chan Carusone, chief technology officer of Alphawave Semi (London, U.K.), to discover the underlying applications driving bandwidth demand and to find out if PAM4 and coherent modulation techniques are ever likely to converge.
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related News
- ASMPT and IBM Deepen Collaboration to Advance Bonding Methods for Chiplet Packages for AI
- How can in-package optical interconnects enhance chiplet generative AI performance?
- How does UCIe on chiplets enable optical interconnects in data centers?
- NTT looks to 15Tbit/s chiplet optical interconnects
Latest News
- Intel Announces Retirement of CEO Pat Gelsinger
- Rebellions and SAPEON Korea Complete Merger, Launching Korea’s First AI Chip Unicorn
- MZ Technologies unveils roadmap for its integrated chiplet/packaging Co-Design EDA tool
- Top-Down Vs. Bottom-Up Chiplet Design
- Alphawave Semi Drives Innovation in Hyperscale AI Accelerators with Advanced I/O Chiplet for Rebellions Inc