Advanced Packaging and Chiplets Can Be for Everyone
By Boris Chau, Project Leader, Faraday Technology Corporation
EETimes (November 29, 2024)
The chiplet revolution is upon us. What began in laboratories as multi-die science projects has eventually evolved. A giant company like AMD, Intel or Nvidia can produce—either at TSMC or, in Intel’s case, internally—a giant, startlingly expensive CPU or GPU multi-die assembly using advanced packaging to achieve remarkable density, power efficiency and performance.
However, the real promise of chiplets is something different: to democratize the design of complex silicon systems so that even systems developers and small-fabless semiconductor companies could develop them.
Today, there are both promising signs and notable obstacles to this vision. But I believe it is already possible for a modest design team to achieve a chiplet-based design today. However, that requires a good understanding of the variables involved and how to manage these in delivering the final design. Very likely today, this will involve using an external partner with that expertise.
This advance cannot come too soon. As the package becomes a critical factor in system performance, integrating multiple semiconductor dies—often designed and manufactured by different companies—within the same package will be essential.
To read the full article, click here
Related Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Interconnect Chiplet
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related Technical Papers
- High-Bandwidth Chiplet Interconnects for Advanced Packaging Technologies in AI/ML Applications: Challenges and Solutions
- Workflows for tackling heterogeneous integration of chiplets for 2.5D/3D semiconductor packaging
- Intel Delivers Cutting-Edge Process Technologies to the Data Center with Intel 18A and Advanced Chiplet Packaging
- Ammonia Plasma Surface Treatment for Enhanced Cu–Cu Bonding Reliability for Advanced Packaging Interconnection
Latest Technical Papers
- Electrothermal co-optimization of 2.5D power distribution network with TTSV cooling
- Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
- Resister: A Resilient Interposer Architecture for Chiplet to Mitigate Timing Side-Channel Attacks
- Quantum Dot DBR Lasers Monolithically Integrated on Silicon Photonics by In-Pocket Heteroepitaxy
- AuxiliarySRAM: Exploring Elastic On-Chip Memory in 2.5D Chiplet Systems Design