A methodology for turning an SoC into chiplets
By Nick Flaherty, eeNews Europe (July 25, 2023)
Siemens has developed a workflow methodology for homogeneous disaggregation of SoCs into chiplets using hierarchical device planning.
The key benefit of adopting hierarchy inside of a design is clear – a seemingly large and complex designs can be disaggregated into smaller and easier to manage building blocks based on a collection of attributes such as function and position.
Advancements in IC packaging manufacturing, combined with the exploding costs of designing monolithic ICs on today’s advanced process nodes, have given rise to a growing trend of disaggregating large SoCs into smaller dies and chiplets says Chris Cone at Siemens EDA.
This increased design complexity requires iterative multi-physics analysis during the floorplanning stage and optimization of the design for PPA and cost goals, significantly raising the barrier for project success. Trying to employ traditional package design solutions – where each device is modeled as a single flat entity – is time consuming and unnecessarily risks delaying production.
However many design structures are comprised of repeatable patterns that can be represented as a parameterized object which is a form of hierarchical design capture. In IC packaging there are two key classes of design structures which lend easily to incorporating hierarchy – these are die-to-die signal interfaces and power distribution networks.
To read the full article, click here
Related Chiplet
- Automotive AI Accelerator
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
Related News
- Honda and Renesas Sign Agreement to Develop High-Performance SoC for Software-Defined Vehicles
- New Memory Architectures for SoCs and Multi-Die Systems
- BOS Semiconductors Signed Development Contract for ADAS Chiplet SoC with an European OEM
- Baya Systems Introduces New Technology to Transform SoCs and Chiplets for Emerging Applications