UMI Scales the Memory Wall in the Chiplet/Multi-Die Era
Discover how the Universal Memory Interface tackles substrate- and die-level real-estate challenges in chiplet-based design, unlocking performance and scalability.
By Ramin Farjadrad, Co-Founder and CEO, Eliyan
A cruel irony is occurring at an accelerating pace as we drive forward into the generative AI era: While the improvements in processor performance to enable the incredible compute requirements of applications like ChatGPT get all of the headlines, a not-so-new phenomenon known as the memory wall risks negating those advances. Indeed, it’s been clearly demonstrated that as CPU/GPU performance increases, wait time for memory also increases, preventing full utilization of the processors.
With the number of parameters in the generative-AI model ChatGPT-4 reportedly close to 1.4 trillion, artificial intelligence has powered head-on into the memory wall. Other high-performance applications aren’t far behind. The rate at which GPUs and AI accelerators can consume parameters now exceeds the rate at which hierarchical memory structures, even on multi-die assemblies, can supply them. The result is an increasing number of idle cycles while some of the world’s most expensive silicon waits for memory.
To read the full article, click here
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related Technical Papers
- Universal Chiplet Interconnect Express: An Open Industry Standard for Memory and Storage Applications
- High-performance, power-efficient three-dimensional system-in-package designs with universal chiplet interconnect express
- System-Technology Co-Optimization for Dense Edge Architectures using 3D Integration and Non-Volatile Memory
- Optimized Low Parasitic Capacitance ESD Clamps for High-Bandwidth 2.5D/3D Chiplet Interfaces in Advanced FinFET Technology
Latest Technical Papers
- Energy-/Carbon-Aware Evaluation and Optimization of 3-D IC Architecture With Digital Compute-in-Memory Designs
- Optimized Low Parasitic Capacitance ESD Clamps for High-Bandwidth 2.5D/3D Chiplet Interfaces in Advanced FinFET Technology
- Why Chiplet-Based Architecture Is the Next Frontier in Semiconductors
- Automakers And Industry Need Specific, Extremely Robust, Heterogeneously Integrated Chiplet Solutions
- Efficient ESD Verification For 2.5/3D Automotive ICs