Avoiding Multi-Die System Re-spins with New Early Architecture Exploration Technology
Getting an early jump on architecture exploration of multi-die systems can yield valuable benefits, such as preventing costly design respins. However, the exploration process has traditionally been rather manual, with most designers relying on static spreadsheets and ad-hoc in-house tools. As a result, it’s challenging to meet key performance indicators (KPIs) or even project schedules.
Now, there’s a new dynamic, early system architecture exploration solution designed to accelerate architecture realization for multi-die systems: Synopsys Platform Architect for Multi-Die Systems.
The solution is built on the industry leading Synopsys Platform Architect™, which provides SystemC™ transaction-level modeling-based tools for early analysis and optimization of SoC architectures for performance and power. This new tool, validated by designers of AI and automotive multi-die systems, accounts for the complex interdependencies of multi-die systems. Read on to learn more about how this dynamic, model-based performance and power analysis and simulation technology can help mitigate the risks of system architecture decisions while enhancing turnaround times for multi-die system designs.
To read the full article, click here
Related Chiplet
- Direct Chiplet Interface
- HBM3e Advanced-packaging chiplet for all workloads
- UCIe AP based 8-bit 170-Gsps Chiplet Transceiver
- UCIe based 8-bit 48-Gsps Transceiver
- UCIe based 12-bit 12-Gsps Transceiver
Related Blogs
- Cadence Transforms Chiplet Technology with First Arm-Based System Chiplet
- Revolutionizing Automotive Design with Chiplet-Based Architecture
- Podcast: How Achronix is Enabling Multi-Die Design and a Chiplet Ecosystem with Nick Ilyadis
- Synopsys and Alchip Collaborate to Streamline the Path to Multi-die Success with Soft Chiplets
Latest Blogs
- 3 Key Takeaways from Chiplet Summit 2025
- Synopsys Bold Prediction: 50% of New HPC Chip Designs Will Be Multi-Die in 2025
- UCIe for 1.6T Interconnects in Next-Gen I/O Chiplets for AI data centers
- Integrated Design Ecosystem™ for Chiplets and Heterogeneous Integration in Advanced Packaging Technology
- AI and Semiconductor in Reciprocity