New Tradeoffs In Leading-Edge Chip Design
By Katherine Derbyshire, Semiconductor Engineering (November 21st, 2024)
Device design begins with the anticipated workload. What is it actually supposed to do? What resources — computational units, memory, sensors — are available?
Answering these questions and developing the functional architecture are the first steps in a new design — well before committing it to silicon, said Tim Kogel, senior director of technical product management at Synopsys. Yet even these early decisions begin to constrain the physical architecture.
With a model of the proposed functionality, planners can begin to ask ‘what if’ questions. Does increasing on-chip memory improve performance enough to justify the increased cost and silicon area? What type of GPU is the best match for the anticipated workload?
To read the full article, click here
Related Chiplet
- 12nm EURYTION RFK1 - UCIe SP based Ka-Ku Band Chiplet Transceiver
- Interconnect Chiplet
- Bridglets
- Automotive AI Accelerator
- Direct Chiplet Interface
Related News
- Arm Chiplet System Architecture Makes New Strides in Accelerating the Evolution of Silicon
- Signal Integrity Plays Increasingly Critical Role In Chiplet Design
- Intel Unveils Chiplet Alliance To Enable New Chip Designs
- Keysight Expands Chiplet Interconnect Standards Support in Chiplet PHY Designer 2025
Latest News
- Untether AI Enters Into a Strategic Agreement with AMD
- Alphawave Semi Tapes Out Breakthrough 36G UCIe™ IP on TSMC 2nm, Unlocking Foundational AI Platform IP on Nanosheet Processes
- How Secure Are Analog Circuits?
- Sarcina Technology advances photonic package design to address key data center challenges
- Imec demonstrates 16nm pitch Ru lines with record-low resistance obtained using a semi-damascene integration approach